
www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

91

APPLICATION OF MULTI-AGENT TECHNOLOGY TO INFORMATION SYSTEMS: AN

AGENT-BASED DESIGN ARCHITECTURE FOR DECISION SUPPORT SYSTEMS

Hao Lan Zhang
School of Computer and Electrical Engineering,

RMIT University, Melbourne, Australia

Gitesh K. Raikundalia
School of Engineering and Science

Victoria University

Yanchun Zhang
School of Engineering and Science

Victoria University

Xinghuo Yu
School of Computer and Electrical Engineering,

RMIT University, Melbourne, Australia

ABSTRACT

One of the most difficult issues in building efficient Information Systems (IS) is the
integration of these systems with the organization’s other systems. This issue is particularly
acute for Decision Support Systems (DSSs). To become more effective and efficient, a DSS
must have an open structure to adapt to the dynamic environment. However, current IS,
especially DSSs, tend to rely excessively on traditional System Development Life Cycle
(SDLC) and this places limitations on current systems’ infrastructures. The emergence of
multi-agent technology addresses this issue and its applications to IS are becoming highly
efficient. In this paper, we introduce a Matrix-Agent connection design, called Agent based
Open Connectivity for Decision Support Systems (AOCD), which balances the manageability
and flexibility in a system and maximizes system performance.

INTRODUCTION

During the past decade, the successful applications of IT-based systems in business processes have
declined because of obstacles in the development of effective IS for business processes. A survey
provided by The Standish Group (The Standish Group, 2001) shows that in U.S.A, 23% of IS failed
outright and 49% systems were late and or went over budget. Apart from the U.S., similar cases

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

92

were also found in the U.K and other countries. The integration difficulty is one of the most crucial
reasons that causes the failure of IS application (Turban, et al, 2005).

Problems in Existing DSS

Among the various obstacles, Steven Alter (Alter, 1999) summarizes five major obstacles when
applying information technology in the real world, which include:
(1) Unrealistic expectations and techno-hype.
(2) Difficulty building and modifying IT-Based Systems.
(3) Difficulty integrating IT-based systems.
(4) Organisational inertia and problems of change.
(5) Genuine difficulty anticipating what will happen.
Most of these obstacles are caused by the obturation of current information system structures.
Figure 1 shows a schematic view of a traditional Decision Support System. From Figure 1, we find
the system structure of traditional DSS is closed and that causes many problems, such as lack of
compatibility, lack of adaptability, lack of expandability, and cost ineffectiveness in SDLC. To
transform an IT-based IS into an open system, multi-agent technology can be deployed. Multi-agent
technology is a superior solution that can enhance a system’s connectivity, extensibility, reusability,
and manageability.

Figure 1: Schematic view of Traditional DSS. (Source from Turban, et al, 2005)

Intelligent agents are goal-oriented, collaborative, flexible, self-starting, intelligent, mobile and
interactive (Turban, et al, 2005). These characteristics of agents ensure the applications of multi-

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

93

agents in DSS to be successful. Rapid development of intelligent agent technology changes SDLC.
Traditional information systems involve seven development phases, which include: requirement
phase, specification phase, design phase, implementation phase, integration phase, maintenance
phase, and retirement. Although an Object-Oriented SDLC emphasises individual object design, it
still based on these seven phases with conceptual changes. Multi-agent-based systems completely
shift current system development methodologies. Such systems offer “Plug-and-Play”, which allows
external components (agents) to be integrated into an existing system without disturbing the system
structure and working process. We believe multi-agent-based systems will eventually replace
current information system model, including object-oriented system model. Objects or components
in current information systems will be replaced by intelligent agents, which are more powerful,
more intelligent, more flexible, and proactive. Based on previous studies (Turban, et al, 2005;
Wagner, 2003; Zhang et al, 2005), we draw a comparison between traditional IS and AOCD-based
IS (agent-based) as shown in Table 1.

Table 1: Comparison of Traditional and AOCD-based Information Systems

 Multi-agents Applications in DSS

 Back in 1975, Hewitt et al. (1975) described an actor concept, which has many similarities to
today’s multi-agent-based DSS. Current applications of multi-agent technology in DSS have been
mainly focusing on decentralized frameworks. For instance, Ossowski et al. (2004) propose and
implement the multi-agent decision support system in transportation management; Vahidov (2006)
suggests the use of intelligent agents in situated systems, and Padgham and Winikoff (2002)
introduce the Prometheus methodology for building Belief-Desire-Intention (BDI) based distributed
agent systems. However, these systems mainly rely on the efficient concurrent control and
synchronous communication technologies. Unfortunately, current technologies in these areas are not
efficient enough, particularly, when they deal with large volumes of transactions. Many
decentralized multi-agent systems suffer from inefficient manageability (Minar, 2002), particularly,
with respect to the difficulties of handling concurrent control and synchronous communication
problems.

Characteristics Traditional Information
Systems

AOCD based Information
Systems

Compatibility Poor Good

Consistency Good Modest

Cost-effectiveness Modest Good

Expandability Poor Good

Flexibility Poor Good

Stability Good Uncertain

Reusability Poor Good

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

94

Here, we propose a novel multi-agent-based architecture for DSS, called Agent-based Open
Connectivity for DSS (AOCD). AOCD architecture adopts a Matrix-agent connection design (see
Figure 2), which overcomes the limitations of decentralized multi-agent systems by using a hybrid
framework. The Matrix-Agent connection design involves three major components: agents, a Matrix
center, and databases. The Matrix-Agent connection design adopts a two-phase communication
mechanism, which involves communication between two agents and communication between the
Matrix and the agents. There are two stages in AOCD framework design. The first stage involves
the Matrix-Agent connection design, which forms the backbone of AOCD architecture. The second
stage involves the individual agent design, which focuses on solving specific problems. Generally,
once the Matrix-Agent connection design is made, it will not be changeable unless the overall
system is replaced. On the contrary, the agents are dynamic components, which may be updated
constantly. Each agent has the ability to solve problems in its domain. An agent is able to seek
cooperation from other agents when it has difficulties in solving a problem, and this makes the
AOCD architecture more powerful than other non-cooperative DSS architectures. The AOCD
architecture is more powerful in that it mirrors the way human groups make decisions: by using a
set of interacting agents, more creative and innovative decisions can be produced as a result of such
cooperation and interaction.

The aim of AOCD architecture design is to provide an open, efficient, and flexible architecture for
DSS. It has been focusing on the architectural design of AOCD system, which provides a
foundation for future AOCD research. The previous research involves:
(1) Introducing the concept of Matrix-Agent connection, which has been proven efficient and

effective compared with other decentralized or centralized frameworks (Wagner, 2003),
(2) Experimental design of agent network topologies in AOCD-based systems (Zhang, et al, 2005;

2006a).

This paper is structured as follows; in the next section, we provide an example scenario to clarify
the implementation of AOCD. In the Matrix-Agent connection design section, we briefly introduce
the design of the Matrix-Agent connection, which mainly focuses on (i) the Matrix interface design,
(ii) the Matrix Register design, and (iii) the agent architectural design. The final section concludes
our research work and considers future issues that need to be addressed.

A CASE STUDY OF AOCD APPLICATION IN IS

Most organisational managers often find it is very difficult to decide whether their organisational
information systems need an upgrade or not (Alter, 1999). There are many factors that plague
decision makers about whether or not to upgrade their systems, which, of course, are traditional
SDLC based systems.

The first factor is the enormous time consumption for the development of a traditional information
system. For traditional SDLC based systems, the upgrade period not only includes the time for
designing specific components but also includes the time for re-evaluating user requirements,
modifying existing system structure (possible re-design when upgrade components affect the overall
system processes), integrating a new system to maintain system consistency and extra outsourcing
manpower is often used for communication in every upgrade phase. Meanwhile, the training
processes for staff to understand new systems also take time.

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

95

The second factor is the high possibility of upgrade failure. As we mentioned in the introduction
section, the success rate of developing IT-based systems for business process is disappointing.
Managers often face the risk of system failure when developing or upgrading a new system.

Figure 2: Schematic view of AOCD-based DSS. (Source from Zhang, et al, 2005)

Thirdly, the dynamic environment might cause their upgrade useless. People are living in a so-
called information explosion age, which makes our day-to-day environment very difficult to predict.
New technologies, new business opportunities, and new inventions are emerging everyday. In this
circumstance, any system upgrade cannot last for long. Therefore, the constant upgrade processes
confuse organisational mangers. Certainly, there are many other reasons for the problems of
upgrading or re-designing, such as the technology gap between existing and new system, system
structural inefficiency that results in some unknown information loss between the new and existing
system, human errors that might occur when constantly shifting their familiar interfaces to some
unfamiliar interfaces, etc.

The use of multi-agent technology is able to solve the above problems. AOCD is a multi-agent-
based architecture, which is open and flexible. To illustrate the effectiveness and efficiency of the
architecture we use the following case as an example.

Nowadays, mergers of international corporations happen frequently as the globalisation
phenomenon has extended to today’s economic section. Hidden behind the encouraging benefits of
merger, most merging corporations have encountered difficulties in integrating various information
systems from different mergees. In many traditional information system development frameworks,
the process of combining two different information systems, especially DSSs, from two different
organizations into one system is time-consuming, costly and inefficient. The traditional

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

96

development process may involve re-analysing the user requirements, reconstructing the database,
redeveloping the code, etc. For instance, during the merger process of the German automaker
Daimler Benz with the U.S. automaker Chrysler (Alter, 1999; Zhang, et al, 2008), difficulties were
found when integrating Daimler’s CAD systems with Chrysler’s CAD systems because the two
companies’ CAD systems were designed based their own company’s business and manufacturing
processes and their CAD systems were incompatible with each other. Many similar cases can be
found when merging two corporations. Using the AOCD architecture can easily solve the
integration obstacles that Chrysler and Daimler faced. To simplify the case, we use two fictitious
companies, Company A and Company B, to explain the merging process in AOCD-based systems.

Company A and Company B are the manufacturer of vehicles. Both companies have developed two
different information systems based on AOCD architecture. In Company A, there are five major
intelligent agents that include: sales agent, human resource agent, accounting agent, marketing
agent, and manufactory agent (including CAD systems). Each agent is responsible for the
information process in its business domain. The human resource agent manages current staff
information and offers advice to the manager if it is necessary to reduce labour of the company. The
sales agent provides information such as current sales performance, sales geographic distribution,
etc., to decision makers. The marketing agent provides the information about the company’s current
marketing status, rivals’ marketing status, and the market trends, and so on. The accounting agent
mainly deals with staff salaries, reimbursement, supply, income payments, etc. The manufactory
agent is responsible for controlling auto-manufacturing systems, CAD systems, warehouse
management, etc.

Company B’s information system is different from Company A’s as its business strength is auto-
motor design. There are four major intelligent agents in Company B’s system including: human
resource agent, financial agent (including accounting, sales and marketing functions), manufactory
agent (including CAD systems), and design agent. The human resource agent and manufactory
agent of Company B are similar to Company A’s. The financial agent deals with all the financial
issues, including current sales performance, sales geographic distribution, the company’s current
marketing status, rivals’ marketing status, market trends, staff salary, reimbursement, supply,
income payments, and so on. The design agent provides the latest auto-motor design information,
existing auto-motor design pattern database, new auto-motor design software information, and so
on.

As the strategic alignment would benefit both companies, the executive boards of the two
companies decide to merge two companies. There would be many problems to merge the
companies’ information systems if they were using traditional information architectures because the
headquarters of the two companies are located at two different cities and their CAD systems
embedded in Manufactory Agent are incompatible. Now, most of the difficulties can be solved
within AOCD framework. Figure 3 shows the two companies’ information systems before the
merger. There are some similarities in the two companies’ information systems, the two human
resource agents are very similar and Company B’s financial agent can deal with all the financial
issues in Company A’s framework.

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

97

Figure 3: Two Companies’ AOCD-based Information Systems (before merger)

Matrix in AOCD is standardized; therefore, the integration process can use one Matrix. Because the
human resource agents (HR agents) in two companies’ information systems are very similar, the
integration process can use one HR agent instead of using both of them. Company B’s financial
agent can replace the sales agent, marketing agent and accounting agent of Company A as the
financial agent is able to deal with all the financial issues in Company A. The integration process is
simple and easy because AOCD design supports plug-and-play. The integrated information system
after merger (see Figure 4) can support both companies’ business processes. The new company’s
information system retains two manufactory agents because the former two companies’ CAD
systems were incompatible. The new information system also retains two knowledge bases, which
are located at the two headquarters, respectively. Matrix can be located at one of the headquarters
and the agents are connected to the Matrix through local area network, wide area network and the
Internet.

As we can see from this case, the difficulties in the integration process, which plague traditional
information systems, are solved in AOCD architecture. In AOCD architecture, there are no
complicated re-design procedures involved in integration or upgrade process and the risk of
upgrading failure is minimized or even completely eliminated. The advantages of using AOCD
architecture in information systems, especially DSS, can be summarised as follows (Bill, 1998): (i)

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

98

Speed-up and efficiency, (ii) robustness and reliability, (iii) enhancing scalability and flexibility, (iv)
cost effectiveness and (v) reusability.

Figure 4: New Company’s information system (after merger)

MATRIX-AGENT CONNECTION DESIGN IN AOCD

The Matrix concept is one of the key ideas in the AOCD architecture. The basic framework of
AOCD architecture is formed by Matrix-Agent connections, which are done through the connection
interfaces provided by Matrix. A connection interface will be allocated to an agent when the Matrix
receives a request of connection from the agent. An agent can connect to the Matrix at any time
without disturbing the current system. Matrix offers a living platform for agents. The use of the
Matrix component distinguishes AOCD architecture from other multi-agent based systems (Weiss,
1999). The Matrix consists of three major parts include (i) agent society that provides a virtual space
to agents, (ii) information acquisition section that acquires knowledge from external environment,
and (iii) Matrix control panel is the core part that mainly handles agent matching, requests
processing, and resource allocation.

The Matrix consists of four layers: interface layer, agent link layer, transmission layer, and data
layer. The interface layer provides interfaces for establishing connection between agents and the
Matrix. The agent link layer provides two operation mechanisms. The first mechanism is a manual
linking process, which enables a user to link different agents, in order to solve a problem through
agent-cooperation. The other mechanism is an auto-match process, which allows the Matrix to
match the corresponding agents by using the information provided by the Matrix register. The
transmission layer provides users with agent language communication functions and message
receiving and sending functions. The data communication layer enables Matrix to establish a
connection with the local database in the AOCD framework.

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

99

Figure 5: Operation of AOCD System (Source from Zhang, et al 2006c)

Figure 5 shows the operation process of the AOCD architecture. An AOCD system starts with
loading the Matrix control panel, which contains the information of previously allocated connection
interfaces, such as the number of connection interfaces allocated in the last system operation. When
the connection interfaces have been established, the Matrix control panel begins to receive requests
from the agents. There are two types of requests: one is the request for connection and another is the
request for corresponding agents. Once a request for connection is received, the Matrix control
panel will change the Matrix register and allocate a new connection interface for the new agent. In
the meantime, a Dynamic-detection process is frequently performed to ensure the system is
receiving requests. If a request for a corresponding agent is received, the Matrix will forward the
request to the Matrix register to search for a corresponding agent or agents. If a corresponding agent
is found, the result will be delivered to the Transmitter to encode/decode the request into a set of
recognizable transmission protocol and operation commands. If the request agent requires
information from the database, then the Matrix needs to perform the database operation according to

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

100

the decoded commands. The database sends the feedback to the Transmitter. The final step is
sending results to the corresponding agent via the connection interface.

Matrix Interface and Matrix Register Design

Matrix interfaces are located at the Matrix interface layer. When a Matrix receives the connection
requests from the agents, the Matrix allocates a number of interfaces (according to requests) and
establishes connections between the Matrix and the agents. The number of interface(s) provided by
a Matrix to connect with agents is unlimited. A Dynamic-detection method is deployed to identify
the number of interfaces generated for an agent. In Dynamic-detection method, an Interface Tag is
deployed to indicate whether a connection request has been received by the Matrix. Once a Matrix
detects the indication of a new connection, a new interface will be allocated to the connection. The
Matrix examines the interface tag and allocates interfaces to agents according to the value of the
interface tag when the AOCD system starts to load the Matrix. A new connection request changes
the value of the interface tag that triggers the re-allocation of the connection interface resources.

The Matrix Register plays a primary role in the Agent-link layer. The major functionalities of
Matrix Register include: (i) searching for a corresponding agent based on the descriptions, and (ii)
providing the corresponding agent address to Transmitter. The Matrix Register makes use of a
three-column list, which contains the agents’ details, functionality descriptions, and data structure
information. The agent information column contains the information of an agent name and agent IP
address. The functionality column contains the information of agent’s functionalities, which is used
to provide agent information when the Matrix searches for a corresponding agent. The Detail
description column consists of four major items: organization/department, data table name, data
attribute, and description control (if applicable).

A Unified Matrices Architecture

The Matrix-agent framework combines the centralised topology and the peer-to-peer
communication (See Figure 2). The bottleneck problem rises when the framework expands to a
large scale because of the limitation of the centralised topology. To tackle the bottleneck problem, a
Unified Matrices Framework has been introduced (Zhang, et al, 2006b). In the Unified Matrices
Framework, a number of Matrices are connected through the Matrix interface layer. A Matrix is
allocated a number of agents according to the agents’ locations and domains. Once the agents in a
Matrix cannot deal with a request, the Matrix will forward the request to its nearest or most familiar
Matrix for further processing. This unified Matrices framework minimizes the bottleneck problem
in a large-scale agent network, such as AOCD framework.

The process of searching a service-providing Matrix involves two major methods, including the
Most familiar partner method and Supplemental partner method. We use a Matrix capability
description table to describe the functionalities and capabilities of a Matrix. This table contains the
information of all the connected agents’ functionalities and domain information, indicating the
major area for which an agent is responsible. Each agent’s functionality is described by several
keywords and these keywords also represent the functionalities and capabilities of the Matrices.
Generally, there are some keyword intersections among the Matrices (Figure 6). The number of
keyword intersections of a requesting Matrix with the other service-providing Matrices are
calculated to generate intersection scores. If a service-providing Matrix has the greatest intersection
score with a requesting Matrix (compared to other Matrices), then this Matrix is regarded as the
most familiar partner of the requesting Matrix. Whereas if a service-providing Matrix has the
smallest intersection score with a requesting Matrix, then this Matrix is regarded as the

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

101

supplemental partner of the requesting Matrix. Both methods follow a four-step calculation
procedure. The intersection score is calculated from the following equation.

(1)

where Raj is the keyword intersection score between Matrix a and Matrix j. Sa denotes a keyword set
of Matrix j that intersects with Sa and Sj. Mi denotes the total number of the Matrices (including the
Matrix a) that have the same intersections with Matrix a. The detailed calculation procedure can be
found in (Zhang, et al, 2006b).

Figure 6. Intersections of Matrices’ capabilities (Source from Zhang, et al, 2006d)

Agent Architectural Design in AOCD

The agent architectural design in AOCD architecture adopts BDI model (Zhang, et al, 2006d),
which was first described in IRMA architecture by Bratman, Israel, and Pollack (Zhang, et al,
2006c). The BDI model has been used widely in many industrial systems and it has been found
efficient in some highly successful agent architectures to date (Bratman, et al, 1988). BDI is not the
only option for AOCD agent design; layered architecture for agent design also has proven useful.
Layered architecture design decomposes an agent’s behaviours and creates separate subsystems to
deal with these different types of behaviour. Touring Machines architecture (Wooldridge, 1999) is a
typical layered architecture design. The main problem with the layered architecture is it lacks the
conceptual and semantic clarity of unlayered approaches. This disadvantage makes the
transformation from logic-based semantics to a layered architecture a very difficult process, as

∑
=

+=
Sa

i
iajaj MRR

#

1

)/1(

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

102

many logic-based semantics cannot be separated completely. This weakness discourages the use of
a layered architecture in AOCD agent design because the AOCD architecture is a DSS-based
architecture that involves many logic-based semantics. We deploy a knowledge base to represent
the information that the agent has about its current environment. Figure 7 shows the AOCD agent
architectural design.

Figure 7: AOCD Agent Architecture Design (Source from Zhang, et al, 2006c)

An agent establishes a connection with the Matrix or other agents through the Matrix-Agent
connection interface. Once a connection is established, the agent is able to send messages to or
receive messages from the environment by using a Message Sender/Receiver component. The
Message Sender/Receiver decomposes the message into several categories and forwards the content
category to a Message Interpreter in the format of AOCD ACL. The Message Interpreter
decomposes the received information and sends a set of commands to a Functional Processor. The
Functional Processor provides the abilities of solving domain problems. A Knowledge Base
provides the Functional Processor with a set of rules (beliefs) in the domain. The Functional
Processor generates the results and delivers them to an Option Generator. The Option Generator
maps a set of rules in the Knowledge Base (beliefs) and a set of intentions to a set of desires, which
can be expressed logically as follows (Bratman, 1988). We adopt the following notations, if A is an
arbitrary set, then)(A℘ is the powerset of A, Bel represents the rules in Knowledge Base, Int

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

103

represents the Intention sets, and Des represents the desires sets. The options can be represented as a
mapping.

Options:)()()(DesIntBel ℘→℘×℘

The Filter function performs a deliberation process, which can be expressed as follow.

Filter:)()()()(IntIntDesBel ℘→℘×℘×℘

After the filtering process, an agent is able to generate one or more intentions, which will be sent
back to the Matrix Interpreter. Matrix Interpreter has the responsibility to determine whether to
forward results to the Matrix-Agent (or agent-agent) connection or take actions immediately. The
Matrix Interpreter is designed with this ability because some messages from the environment do not
require feedback, e.g., a manager sends a message to the sales agent demanding a printout of
today’s timetable. This message does not contain any complicated decision making process and is
one-way. In this case, it is not necessary to send any feedback to the manager. Thus the Matrix
Interpreter would simply take the action, which is producing a printout of timetable, instead of
performing any further activities.

RESULTS OF THE AOCD TOPOLOGICAL EXPERIMENTS

AOCD framework is a hybrid multi-agent network. We have conducted a set of experiments to
evaluate the topological performance of AOCD-based (hybrid) system (Zhang et al, 2006a). Figure
8 and Figure 9 show two snapshots of the AOCD topological experiments.

Figure 8: Agent Matching Process of the Experiment (Source from Zhang, et al, 2006d)

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

104

Figure 9: Configuration Interface of the Experiment

Our study shows the hybrid topology presents a superior performance compared to the other two
topologies, especially the centralised topology. In the centralised topological experiments, the total
time consumption for processing 2917 requests is 28477 seconds. The average time consumption
for one request in the centralised system is 9.76 seconds, whereas the average time is only 3.41
seconds in the hybrid topology (Figure 10). In addition, the average success rates of the two
topologies are 86.74% (centralised) and 95.45% (hybrid), respectively (Figure 11). The
experimental design and more detailed experimental analysis can be found in our previous work
(Zhang, et al , 2006a).

Figure 10: Average processing time comparison Figure 11: Success rate comparison

We noticed that for both centralised and hybrid topologies when the produce of the request-
volume/participated-agents increases, the success rate of processing the requests appears to decrease
(Figure 12 and 13).

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

105

Figure 12: Decreasing trends of success rate in centralised topology (Source Zhang, et al, 2006d)

Figure 13: Decreasing Trends of Success Rate in Hybrid Topology (Source Zhang, et al, 2006d)

These trends suggest that to increase the success rate of processing the requests in AOCD-based
systems, we need to balance the request volume and the number of participating agents. In other
words, in order to process a number of requests, the number of participating agents should not be
too small. The more agents that are involved in dealing with the requests, the probability of
increasing the success rate is higher.

CONCLUSIONS AND FUTURE WORK

The significance of the AOCD design is that it:
(1) Provides a flexible plug-and-play architecture, which eliminates the difficulties of

integrating different information systems or upgrading information systems,

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

106

(2) Combines centralized communication and decentralized communication in the same
framework, which allows the agents to communicate in a more effective way. By imitating
the way human communities make decisions, more creative and innovative decision
outcomes can be produced as a result. A concrete performance analysis also has been
performed (Zhang, et al, 2008), which indicates that such architecture is able to deliver
good performance.

Future work on AOCD will mainly focus on three aspects:
 The use of agent design patterns (Ferguson, 1992; Aridor, 1998) in AOCD is considered to be
helpful because of their flexibility, reusability, and understandability for agent application design.
Future work can conduct a survey on current methodologies in the agent design pattern area.
 Developing an efficient agent-matching algorithm. Agent matching in AOCD is a crucial issue,
which could enhance the efficiency of agent cooperation.
 Analysing the possible negative impacts of using multi-agent technology in information
systems.

REFERENCES

Alter, S. (1999) Information Systems – a management perspective (3rd edition), Addison-Wesley
Educational Publisher Inc., pp. 23-27.

Aridor, Y., & Lange, D. B. (1998) ‘Agent Design Patterns: Elements of Agent Application Design’,
Proceedings of the Autonomous Agents 1998 Conference, Minneapolis, USA.

Bill, V. (1998) “The First Global Car Colossus”, Business Week, pp. 40-43.

Bratman, M.E., Israel, D.J., & Pollack, M.E. (1988) ‘Plan and resource-bounded practical
reasoning’, Computational Intelligence, pp. 349-355.

Ferguson, I., A. (1992) ‘Touring Machines: An Architecture for Dynamic, Rational, Mobile
Agents’, PhD thesis, Clare Hall, University of Cambridge, UK.

Hewitt, C., Bishop, P., & Steiger, T. (1975) ‘A Universal Mosular Actor Formalism for Artificial
Intelligence’, Proceedings of the Fourth International Joint Conference on Artificial
Intelligence, pp. 235-245.

Minar, N. (2002) ‘Distributed system topologies’. http://www.openp2p.com/lpt/a/1461 accessed 20
July 2005.

Ossowski, S., Fernandez, A., Serrano, J.M., Perez-de-la-Cruz, J.L., Belmonte, M.V., Hernandez,
J.Z., Garcia-Serrano, A.M., & Maseda, J.M. (2004) ‘Designing Multiagent Decision Support
System-The Case of Transportation Management’, Proceedings of 3rd AAMS, Vol. 3, New
York, U.S.A.

Padgham, L., & Winikoff, M. (2002) ‘Prometheus: A Methodology for Developing Intelligent
Agents’, Proceedings of AAMAS 2002. Bologna, Italy.

The Standish Group International, Inc. (2001) ‘Extreme Chaos’, Publication of CHAOS Report
2001 Standish Group International Inc.

Turban, E., Aronson, J. E., & Liang, T. (2005) ‘Decision Support Systems and Intelligent Systems’
(7th edition), Prentice Hall Publication, pp. 223 and pp. 109, 707.

www.manaraa.com

Australasian Journal of Information Systems Volume 15 Number 2, 2009

107

Vahidov, R. (2006) ‘Design Researcher’s IS Artifact: a Representational Framework’, Proc. of First
International Conference on Design Science in Information Systems and Technology,
Claremont, U.S.A.

Wagner, G. (2003) ‘The Agent-Object-Relationship Metamodel: Towards a Unified View of State
and Behavior’, Information Systems, 28:5.

Weiss, G. (ed.) (1999) ‘Multiagent Systems – A modern approach to distributed artificial
intelligence’, The MIT Press, pp. 8-9.

Wooldridge, M. (1999) ‘Intelligent Agent’, In Weiss, G. (Ed.) Multiagent systems-A modern
Approach to Distributed Artificial Intelligence, The MIT Press, pp. 27-77.

Zhang, H. L., Leung, C.H.C., and Raikundalia, G. K. (2005), “AOCD: A Multi-agent Based Open
Architecture for Decision Support Systems”, Proceedings of International Conference on
Computational Intelligence for Modelling, Control & Automation, Vienna, Austria, 2, pp.
295-300.

Zhang, H. L., Leung, C.H.C., and Raikundalia, G. K. (2006a), “Performance Analysis of Network
Topology in Agent-based Open Connectivity Architecture for DSS”, Proceedings of 20th
International Conference on Advanced Information Networking and Applications, Vienna,
Austria, vol. 2, pp. 257-261.

Zhang, H. L., Leung, C.H.C., and Raikundalia, G. K. (2006b), ‘Towards the Matrix Concept: A
Virtual Platform for Intelligent Agent Application in Decision Support Systems’,
Proceedings of The 7th International Symposium on Knowledge and Systems Science
(KSS2006), Beijing, China, pp. 115 – 122, Lecture Notes in Decision Sciences 8, Global-
Link Publisher.

Zhang, H. L., Leung, C.H.C., and Raikundalia, G. K. (2006c), ‘A Novel Matrix-Agent Connection
Design in Multi-agent Based Architecture for Decision Support Systems’, In Technical
Reports of the IFIP TC8/WG 8.3 Open Conference, The London School of Economics,
London, UK, 28 June – 1 July 2006.

Zhang, H. L., Leung, C.H.C., and Raikundalia, G. K. (2006d), ‘Matrix-Agent Framework: A Virtual
Platform for Multi-agents’, Journal of System Sciences and Systems Engineering, Vol. 15,
No. 4, pp. 436 – 456, Springer-Verlag Press.

Zhang, H. L., Leung, C.H.C., and Raikundalia, G. K. (2008), ‘Topological analysis of AOCD-based
agent networks and experimental results’, Journal of Computer and System Sciences, Vol.
74, No. 2, pp. 255 – 278, Elsevier Publication

ACKNOWLEDGEMENTS

The experimental design of this research was supported by Victoria University. Thanks also go to Dr
Frederic Adam of University College Cork for his comments on the previous version of the Matrix
design.

www.manaraa.com

© 2009. This work is published under
https://creativecommons.org/licenses/by-nc/4.0 (the “License”).

Notwithstanding the ProQuest Terms and Conditions, you may use this content
in accordance with the terms of the License.

